

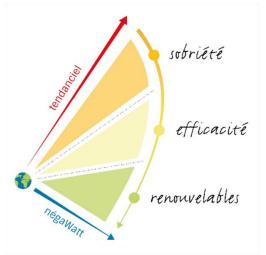
WEBINAIRE

Transition énergétique : quel impact sur les ressources en matériaux ?

24 mai 2022 à 12h

Introduction

- 1. La démarche négaMat
- 2. Quels matériaux?
- 3. Quelle transition énergétique?


L'association négaWatt

- Association créée en 2001 par des professionnels de l'énergie
- Missions :
 - Expertise et prospective énergétique
 - Plaidoyer à l'échelle nationale
- 12 salariés 30 membres actifs - 1500 adhérents

www.negawatt.org

LA DEMARCHE NEGAWATT

- 1. De quels services énergétiques at-on besoin ? Quel énergie utile ?
- 2. Avec quels appareils et quels moyens de les produire ?
- Avec quelles sources d'énergie ?

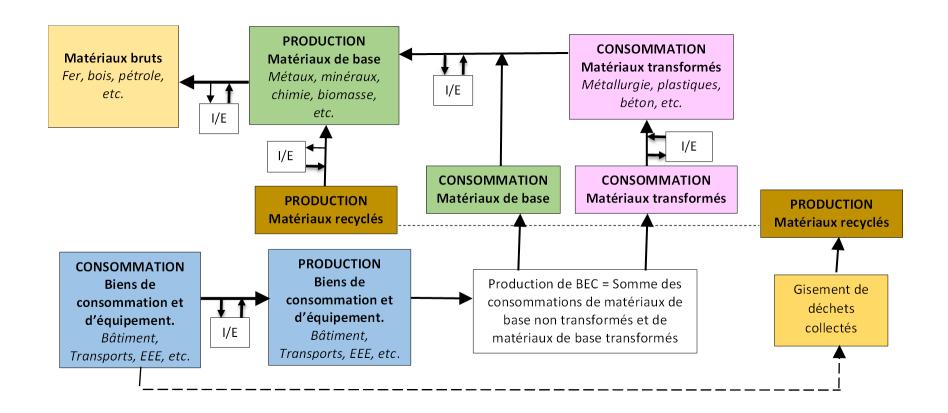
Les matériaux et la transition énergétique

Quels matériaux ? Combien ?

Qu'est-ce que la transition énergétique?

Introduction

- 1. La démarche négaMat
 - 2. Quels matériaux?
 - 3. Quelle transition énergétique?


1. La démarche négaMat

- 1.1 Les flux de matière
- 1.2 Demande, sobriété, économie circulaire
- 1.3 Stratégie industrielle
- 1.4 Avec quels matériaux fabrique-t-on les biens?
- 1.5 Déchets et recyclage
- 1.6 Matériaux bruts et ressources

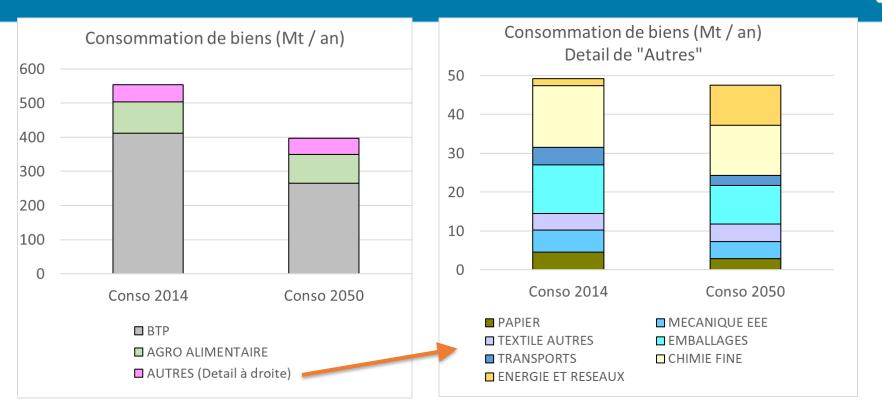
7

La démarche négaMat

1. La démarche négaMat

- 1.1 Les flux de matière
- 1.2 Demande, sobriété, économie circulaire
- 1.3 Stratégie industrielle
- 1.4 Avec quels matériaux fabrique-t-on les biens?
- 1.5 Déchets et recyclage
- 1.6 Matériaux bruts et ressources

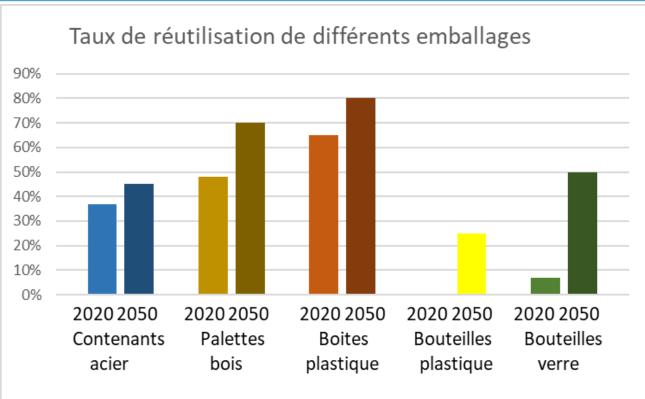
Etape 1 : La demande : sobrieté et économie circulaire

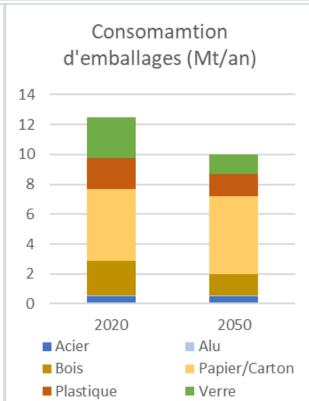


CONSOMMATION
Biens de
consommation et
d'équipement.
Bâtiment,
Transports, EEE, etc.

	Sobriété taille	Sobriété usage	Sobriété mutual.	Réutili sation	Répara tion	Recyc lage	Nbre secteurs
AGRO ALIMENT.	OUI	OUI	NON	NON	NON	NON	8
PAPIER	OUI	OUI	NON	NON	NON	OUI	3
Mécanique EEE	OUI	OUI	OUI	OUI	OUI	OUI	15
Textile Divers	OUI	NON	Peu	OUI	OUI	OUI	14
EMBALLAGES	OUI	OUI	NON	OUI	Peu	OUI	11
TRANSPORTS	OUI	OUI	OUI	OUI	OUI	OUI	15
CHIMIE FINE	OUI	OUI	NON	NON	NON	NON	11
BATIMENT - TP	OUI	OUI	OUI	OUI	OUI	OUI	19
ENERGIE RESEAUX	NON	NON	NON	NON	OUI	OUI	32
TOTAL							128

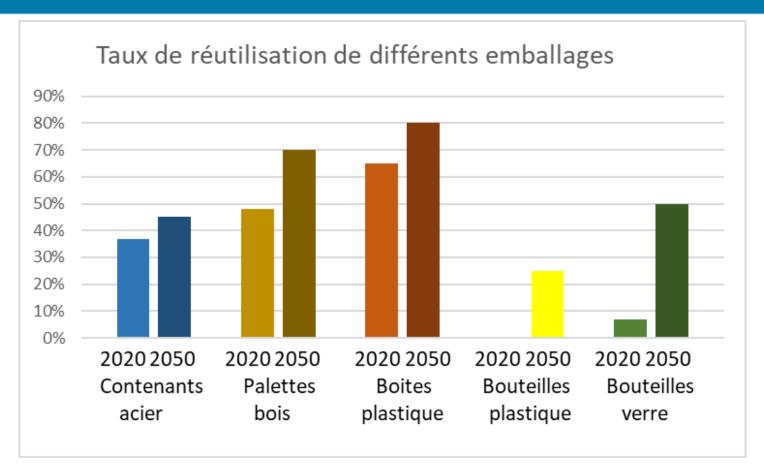
Evolution de la consommation de biens dans le scénario n





Tous les secteurs sont en baisse sauf la production d'énergie (énergies renouvelables)

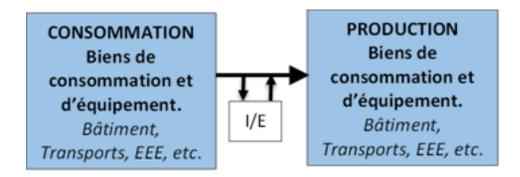
> Exemple de réutilisation : les emballages



Réparation et réutilisation augmentent la durée de vie

1. La démarche négaMat

- 1.1 Les flux de matière
- 1.2 Demande, sobriété, économie circulaire
- 1.3 Stratégie industrielle
- 1.4 Avec quels matériaux fabrique-t-on les biens?
- 1.5 Déchets et recyclage
- 1.6 Matériaux bruts et ressources


Etape 2 : de la consommation à la production

Produire ce que l'on consomme et non l'inverse

Une **stratégie industrielle** pour la France

I/E = Imports / Exports

Les leviers d'action :

- Néorientation des secteurs du passé (ex. pétrochimie)
- Relocalisation des secteurs en décroissance (ex. mécanique, métallurgie)
- Développement national des secteurs d'avenir (énergies renouvelables, batteries)

Pourquoi relocaliser?

> Social:

Compensation des pertes d'activité dues à la sobriété

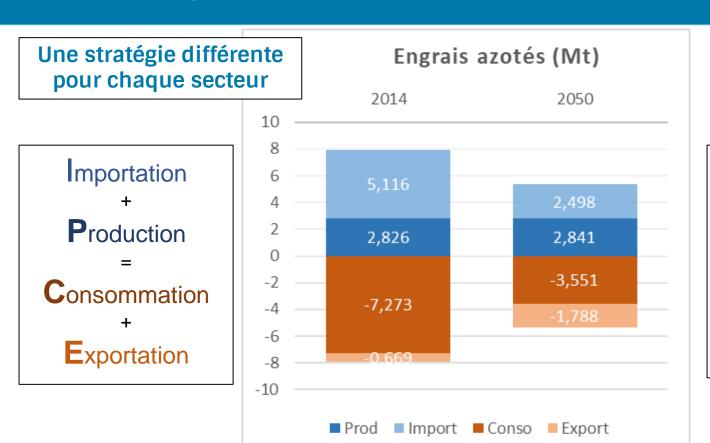
> Environnemental

- Amélioration de l'empreinte carbone
- Amélioration de l'empreinte matière

> Stratégique

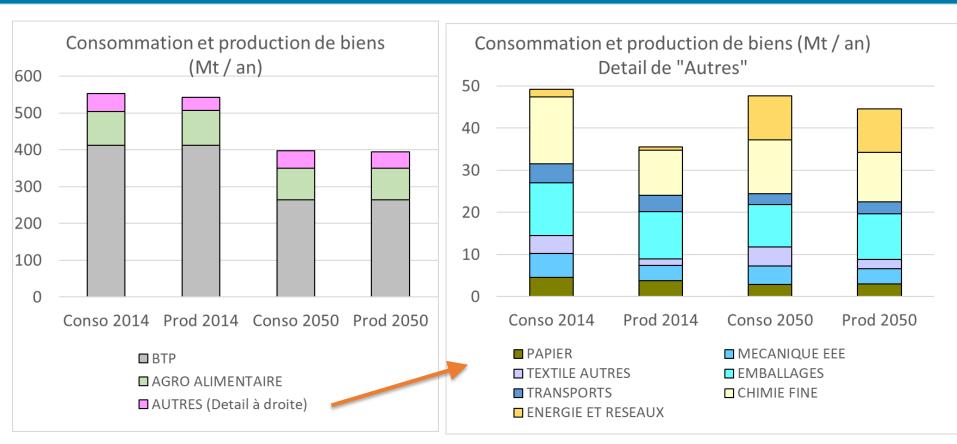
- Autonomie / résilience des approvisionnements
- Stratégique et leadership technologique

> Economique


- Amélioration du déficit des paiements
- Autres impacts macro-économiques

J.M. Keynes

Stratégie industrielle



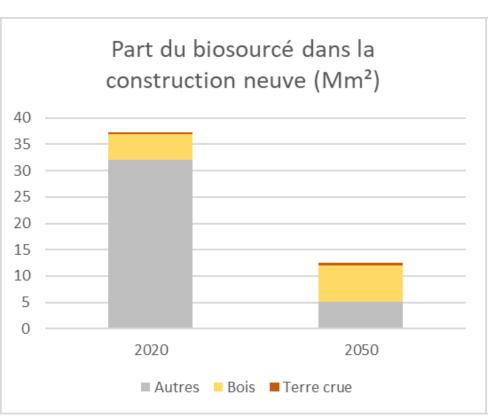
Moins d'Import
+
Prod maintenue
=
Conso en baisse
+
Export en hausse

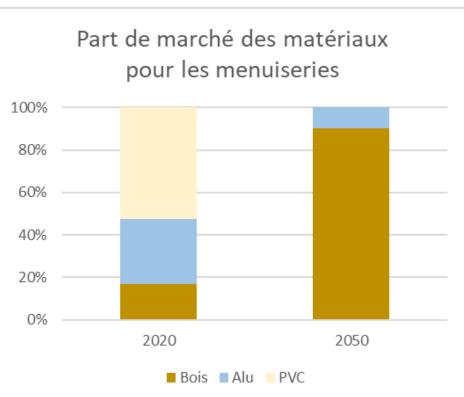
Relocalisation de certains secteurs

1. La démarche négaMat

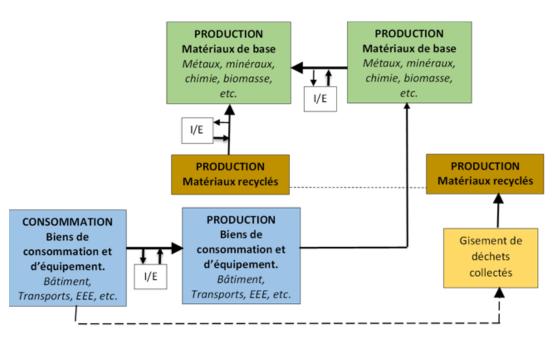
- 1.1 Les flux de matière
- 1.2 Demande, sobriété, économie circulaire
- 1.3 Stratégie industrielle
- 1.4 Avec quels matériaux fabrique-t-on les biens?
- 1.5 Déchets et recyclage
- 1.6 Matériaux bruts et ressources

Etape 3: Avec quels matériaux fabrique-t-on les produits finis?


Anticiper la production de matériaux avec la demande de biens de


consommation 2020 r 2025 2030 2035 г 2040 2045 2050 **PRODUCTION** CONSOMMATION Matériaux de base Matériaux de base Métaux, minéraux, Métaux, minéraux, chimie, biomasse, chimie, biomasse, etc. etc. I/E Production de biens = **PRODUCTION** CONSOMMATION somme de matériaux Biens de Biens de consommation et consommation et consommés d'équipement. d'équipement. I/E Bâtiment. Bâtiment, Transports, EEE, etc. Transports, EEE, etc.

Matrice de simulations année par année jusqu'en 2070



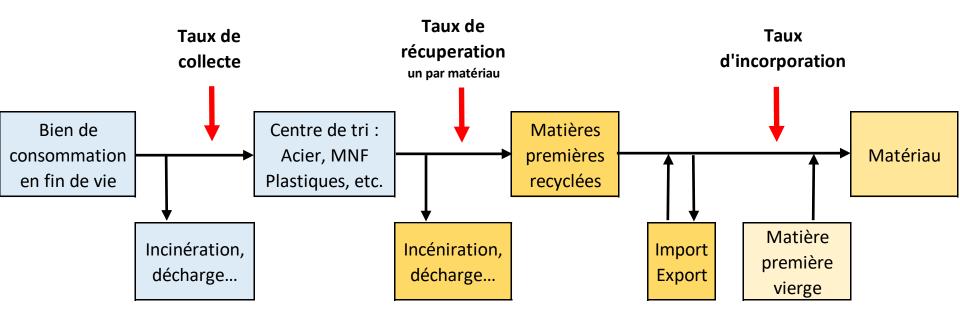
1. La démarche négaMat

- 1.1 Les flux de matière
- 1.2 Demande, sobriété, économie circulaire
- 1.3 Stratégie industrielle
- 1.4 Avec quels matériaux fabrique-t-on les biens?
- 1.5 Déchets et recyclage
- 1.6 Matériaux bruts et ressources

Etape 4 : Déchets et recyclage

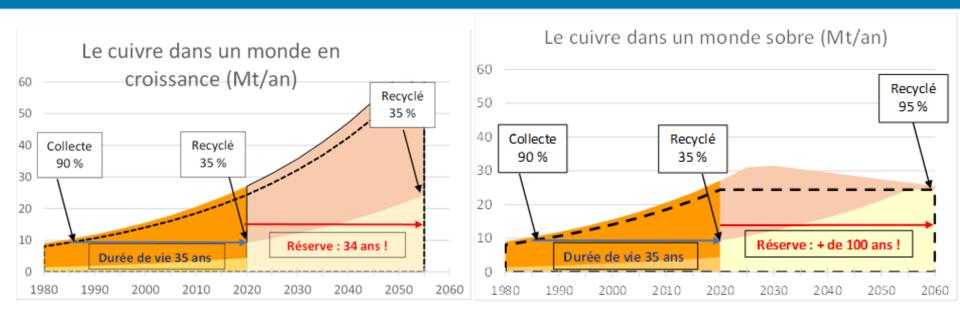
Les leviers d'action :

La collecte


Le tri

La relocalisation des Mat. recyclés

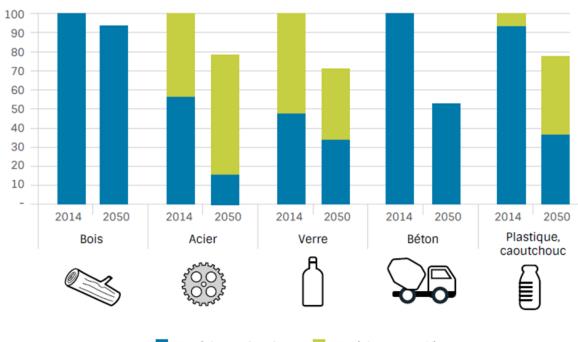
L'efficacité du recyclage dépend du gisement potentiel de déchets. Dans un monde en croissance, celui-ci est limité par la durée de vie des objets. D'où la nécessité de baisser la demande.



Que peut on attendre du recyclage?

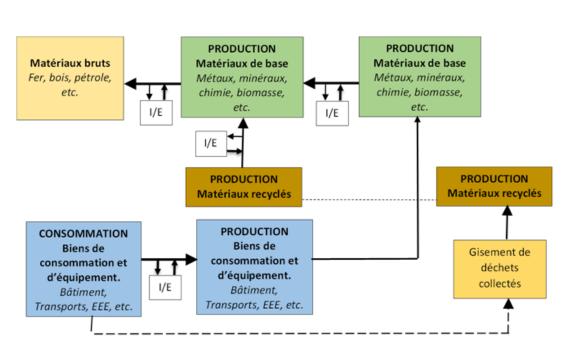
Réponse du scénario négaWatt :

Dans un monde en croissance, le taux de matières recyclées ne peut augmenter. Avec la sobriété, le recyclage devient efficace



Moins de matériaux et plus de recyclage

Evolution de la consommation de matériaux primaires et recyclés



1. La démarche négaMat

- 1.1 Les flux de matière
- 1.2 Demande, sobriété, économie circulaire
- 1.3 Stratégie industrielle
- 1.4 Avec quels matériaux fabrique-t-on les biens?
- 1.5 Déchets et recyclage
- 1.6 Matériaux bruts et ressources

Etape 5 : Les ressources brutes

De combien en dispose-t-on?

Réserve prouvée actuelle ou prévisible ?

Typologie	Description	Ex, le Cuivre
Réserve prouvée	Technique éprouvée et rentable	870 Mt*
Réserve possible	Géologiquement identifiée, possible techniquement mais peut être non rentable	2 720 Mt
Ressource ultime	ultime Géologiquement identifiée mais incertaine techniquement et économiquement	

Questions:

Qu'est ce qu'une mine rentable en 2050 ? Et l'environnement ? Est-ce cela que l'on veut ?

Réponse du scénario négaWatt :

On se limite à la réserve prouvée actuelle et on n'essaie pas d'ouvrir de nouvelle mines potentielles

Quel quota pour la France ?

Quel scénario mondial futur ? Scénario type SSP1

SSP1 : forte coopération internationale, **priorité au développement durable**, population stabilisée en 2050

Scénario type SSP3

SSP3 : monde fragmenté, compétition entre pays, une **croissance économique lente**, politiques de sécurité et production industrielle peu soucieuse de l'environnement

Réponse du scénario négaWatt :

Dans un monde égalitaire, la France a droit à un pourcentage de la réserve proportionnel à sa population

Exemple pour le cuivre :

Population mondiale

Population française

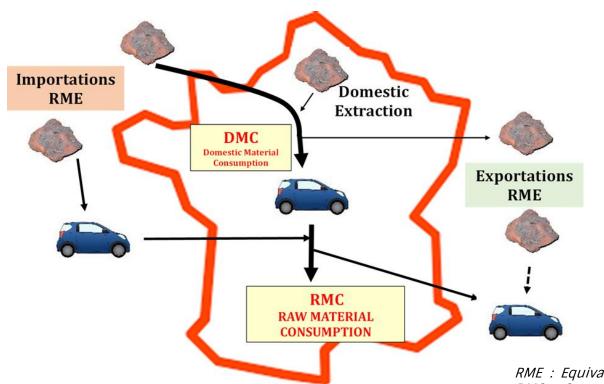
Ouota de réserve

7.9 milliards d'habitants

67 millions d'habitants soit 0,86%

0,86%*870 Mt = 7,45 Mt cuivre

Introduction

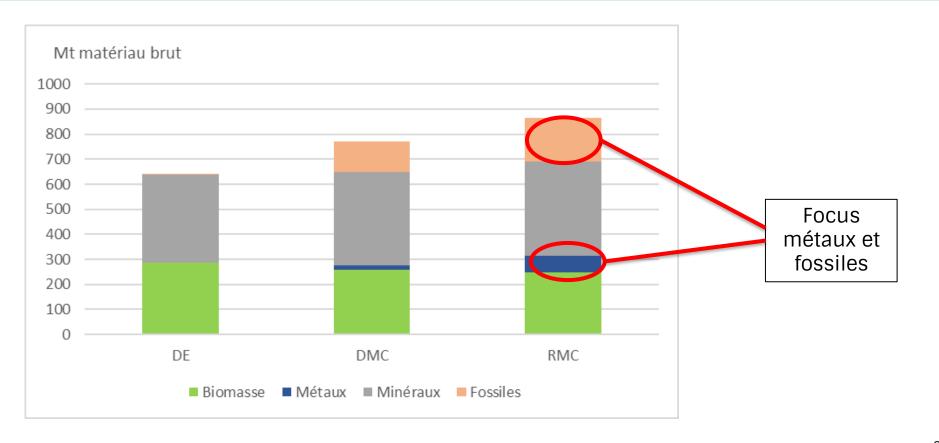

- 1. La démarche négaMat
- 2. Quels matériaux?
- 3. Quelle transition énergétique?

2. Quels matériaux?

- 2.1 Consommation et empreinte
- 2.2 La biomasse
- 2.3 Les métaux
- 2.4 Les terres rares
- 2.4 Les fossiles à usage non énergétique

Pourquoi une empreinte matière ?

L'empreinte matière tient compte des matériaux produits et importés en France ET de ceux qui sont contenus dans des biens fabriqués à l'étranger et importés en France.


Elle est liée à notre consommation et rend mieux compte des conséquences de nos modes de vie.

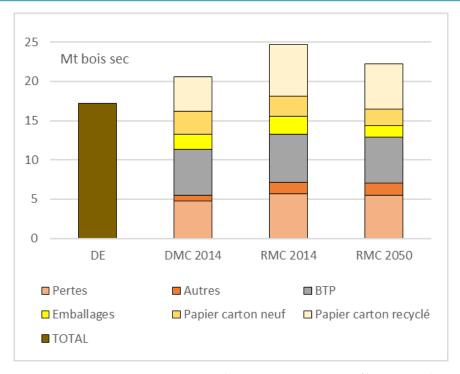
RME : Equivalence en tonnage de Matériau brut DMC : Consommation intérieure de matériaux

RMC : Consommation en empreinte yc les imports / exports

Ressource et empreinte des matériaux bruts en France

2. Quels matériaux?

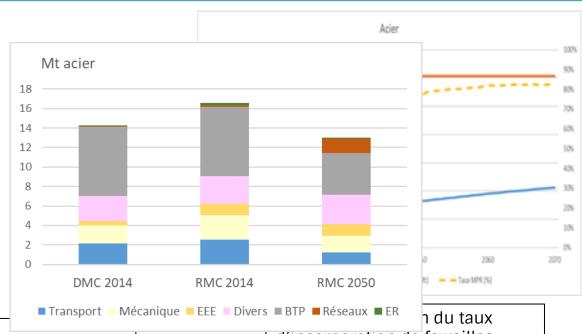
- 2.1 Consommation et empreinte
- 2.2 La biomasse
- 2.3 Les métaux
- 2.4 Les terres rares
- 2.4 Les fossiles à usage non énergétique


Le bois

La France est légèrement exportatrice de bois matériau mais importe de la pâte à papier, des meubles et des palettes.

En 2050, on consomme **moins de** papier et d'emballages.

La part du bois dans le bâtiment est compensée par la **baisse globale de la construction**.


Les pertes comprennent les chutes, les coupes et les produits annexes de l'industrie papetière (liqueur noire...). Souvent ces pertes sont valorisées par combustion.

2. Quels matériaux?

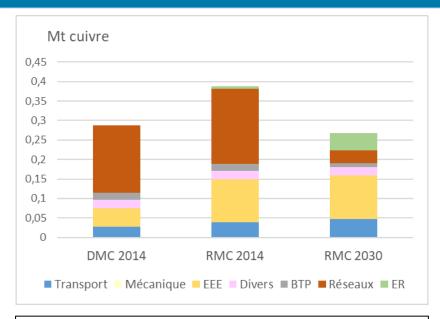
- 2.1 Consommation et empreinte
- 2.2 La biomasse
- 2.3 Les métaux
- 2.4 Les terres rares
- 2.4 Les fossiles à usage non énergétique

L'acier, un matériau non critique

Entre 2014 et 2050 :

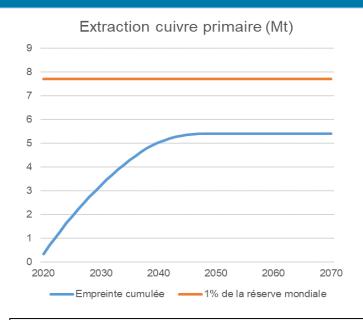
- Baisse générale de 22%
- Augmentation des réseaux
- Les ER représentent entre 1% et 2%

d'incorporation de ferrailles :


- 80% en 2050
- 90% en 2070

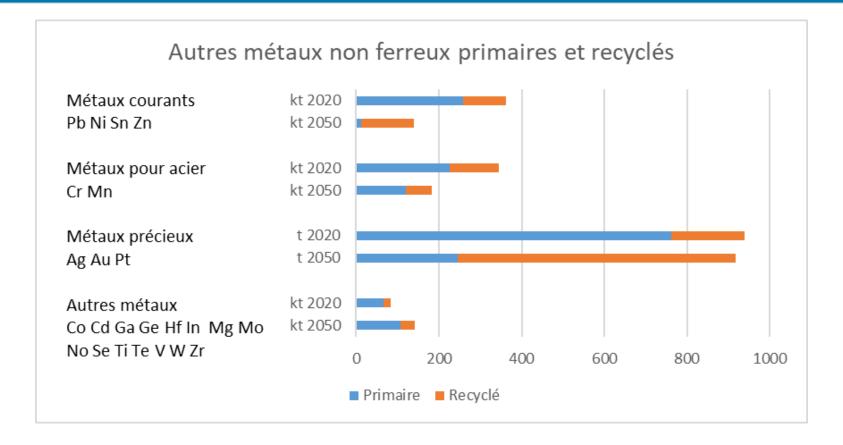
Pas de menace dans ce siècle

Z


Le cuivre : point de vigilance

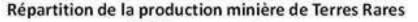
Empreinte 35% plus élevée que la consommation Importations de transports et d'EEE Forte diminution entre 2014 et 2050 :

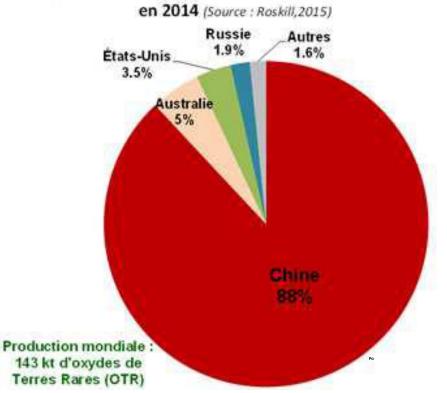
- Substitution alu dans les réseaux
- Les ER représentent 17% en 2050


Forte augmentation du taux d'incorporation de MPR : 95% en 2050

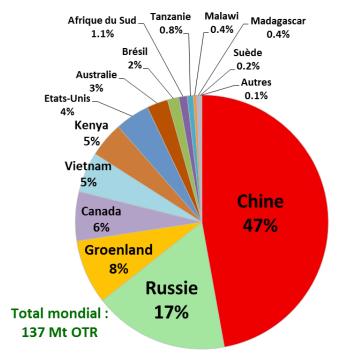
Malgré une forte sobriété et substitution, le cuivre est un matériau critique dans ce siècle

Les autres métaux


2. Quels matériaux?

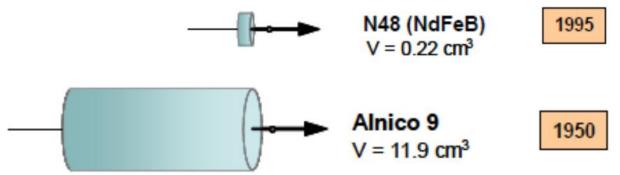

- 2.1 Consommation et empreinte
- 2.2 La biomasse
- 2.3 Les métaux
- 2.4 Les terres rares
- 2.4 Les fossiles à usage non énergétique

Terres rares : pas si rares mais inégalement réparties

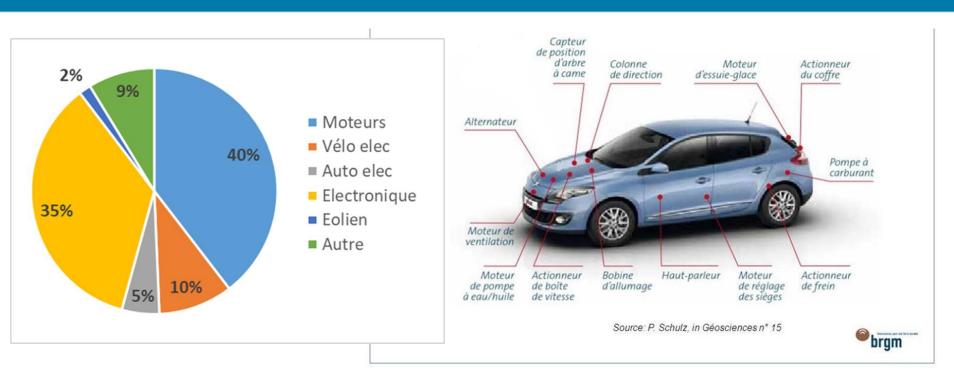


Répartition des ressources en Terres Rares - hypothèse basse 2015

(sources mixées SNL, TMR, Roskill, 2015)



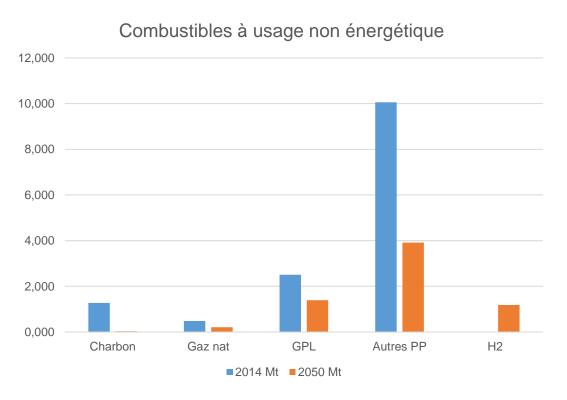
Les usages des terres rares


La	Lanthane	Applications diverses	
Ce	Cerium		
Nd	Néodyme	Aimants permanents pour tous types de moteurs	
Dy	Dysprosium		
Pr	Praséodyme		
Yt	Ytrium	Fluorescence, écrans plats,	
Tb	Terbium	un peu dans les LEDs	

Ce qui concerne un peu la transition énergétique
La miniaturisation des moteurs grâce
aux aimants permanents
PM Permanent Magnet

Les aimants permanents sont partout dans nos vies

Usages des aimants permanents dans le monde en 2019


2. Quels matériaux?

- 2.1 Consommation et empreinte
- 2.2 La biomasse
- 2.3 Les métaux
- 2.4 Les terres rares
- 2.4 Les fossiles à usage non énergétique

Bilan des combustibles à usage non énergétique

PP = produits pétroliers

On fabrique des oléfines, puis des plastiques mais le pétrole est remplacé par :

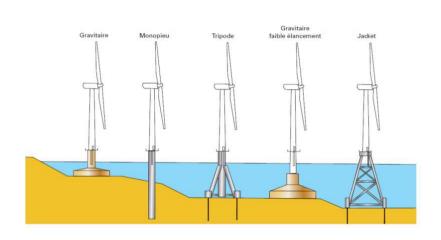
- 1. Voie Biomasse → éthanol → Déshydratation → Ethylène NON
- 2. Voie Biomasse → pyrogazéification → **méthanol** PEU
- 3. Voie biomasse \rightarrow méthanisation \rightarrow biométhane \rightarrow méthanol NON
- 4. Voie électricité → hydrogène → + CO2 → méthanol 40% en 2035

Le méthanol est ensuite utilisé :

- 1. Voie MTO Méthanol → oléfines
- 2. Voie MTA Méthanol → aromatiques

Introduction

- 1. La démarche négaMat
- 2. Quels matériaux?
- 3. Quelle transition énergétique?


3. La transition énergétique

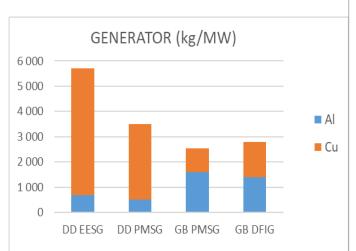
- 3.1 L'éolien
- 3.2 Le photovoltaïque
- 3.3 Les réseaux
- 3.4 Les batteries
- 3.5 Synthèse

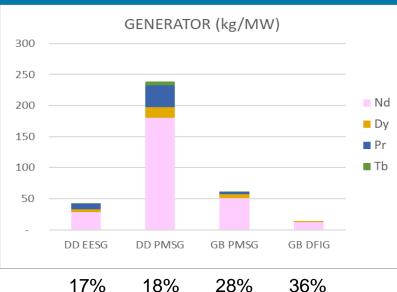
Les matériaux dépendent des technologies

		Terrestre	Offshore
			0.1101101
		embase poids	gravitaire
		colonnes balastées	monopieu
		inclusions rigides	tripode
		pieux	gravitaire faible
Fondations			élancement
		mixtes	jacket
		composites	flottant TLP
			flottant semisub
			flottant spar
Tour		Acier, béton	Acier
Nacelle			
	Boite de vitesse	GB DFIG Asynchrone induction	
		GB SCIG Synchrone cage à écureuil	
Générateur		GB PMSG Synchrone Aimants permanents	
Generateur	Entraine- ment direct	DD EESG Synchrone excitation électrique	
		DD PMSG Synchrone Aimants permanents	
		DD HTS Supraconducteurs	
Transformateur			
Câble			
Sous station			

- DD Transmission directe
- GB Boite de vitesse
- EESG DFIG Synchrone trad
- **PMSG** Aimants permanents

Eolien : les générateurs




Deux configurations:

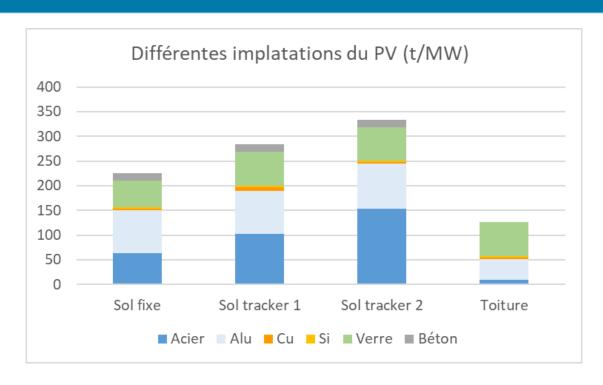
- DD Transmission directe
- GB Boite de vitesse

Deux rotors

- EESG DFIG Synchrone trad
- PMSG
 Aimants permanents

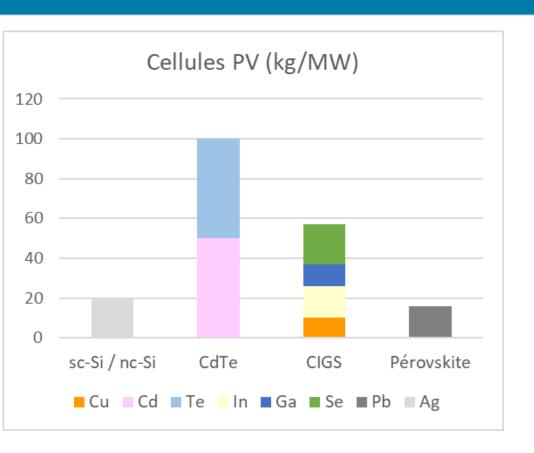
Part de marché 2020-2070 17% 18% 28% 36%

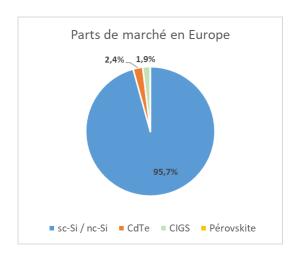
La transmission directe consomme + de cuivre Les aimants permanents – de cuivre et + d'alu Les aimants permanents consomment davantage de terres rares Mais c'est surtout la transmission directe qui fait la différence


3. La transition énergétique

- 3.1 L'éolien
- 3.2 Le photovoltaïque
- 3.3 Les réseaux
- 3.4 Les batteries
- 3.5 Synthèse

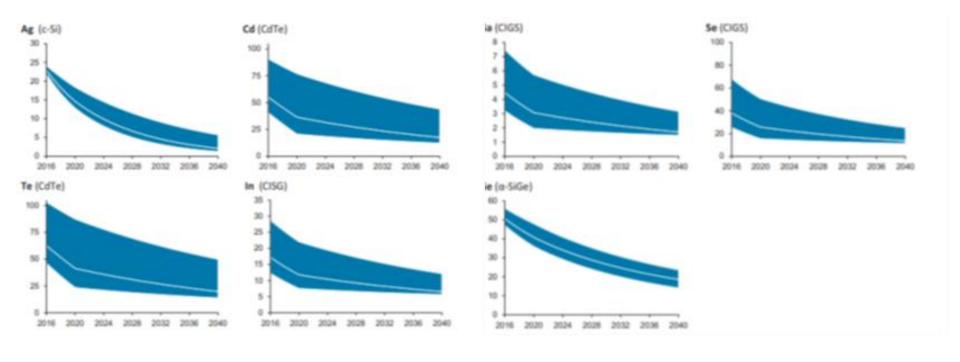
PV : un effet de taille


	Au sol	Toiture	
	Mono sc-Si		
	Poly mc-Si		
CELLULES	CdTe		
	CIGS		
	Pérovskite		
		Fixe	
SUPPORT		Tracker 1	
		Tracker 2	
	2,5 kW		
	5 kW		
ONDULEUR	10 kW		
	20 kW		
	> 20 kW		



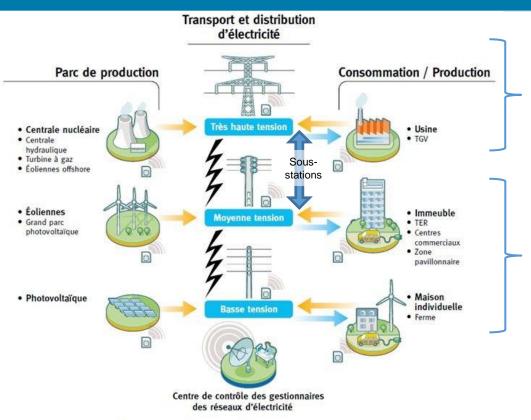
Dans le scénario nW on ne retient que les installations au sol fixes ou les toitures Pas de tracker

> PV : écrasante majorité du silicium



Ecrasante majorité des cellules au silicium :
Ni métaux critiques,
ni terres rares

Des matériaux en baisse constante



3. La transition énergétique

- 3.1 L'éolien
- 3.2 Le photovoltaïque
- 3.3 Les réseaux
- 3.4 Les batteries
- 3.5 Synthèse

Le réseau électrique de demain

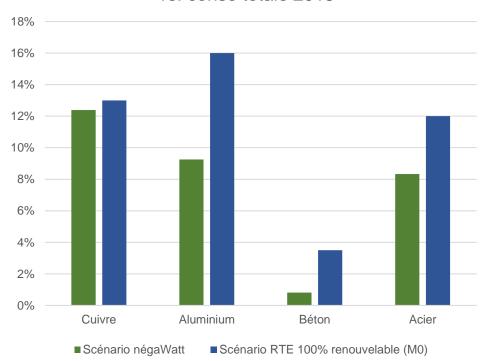
- **Transport**: interconnexions renforcées, nouvelles lignes pour raccorder l'éolien offshore
- **Distribution**: sous-stations renforcées. nouvelles lignes pour les parcs de moyenne puissance (éolien terrestre, PV au sol), bornes de recharge...
- **Stockage**: barrages, batteries, power-togas

Quelles conséquences sur les matériaux ?

Un sujet d'actualité... complexe

- Travaux récents menés par RTE et Enedis
- Fortes incertitudes sur la prospective matière du réseau de distribution... pourtant prépondérant dans la consommation de matériaux

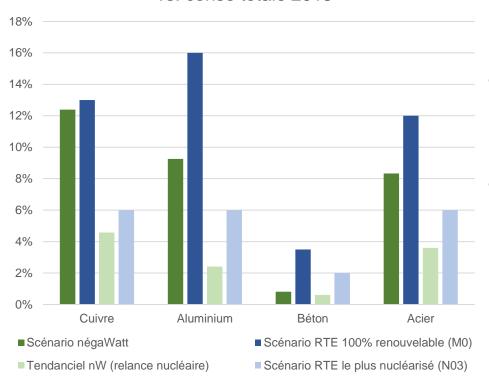
Travaux en cours, mais résultats consensuels


- Impact principal sur matériaux « structurels » : Cuivre, Aluminium, Béton, Acier
- Faible impact des technologies de stockage
 - A long terme, les batteries stationnaires représentent seulement ~5% du flux annuel de batteries véhicules électriques hors d'usages
 - Electrolyseurs & méthanation peu consommateurs de matériaux

7

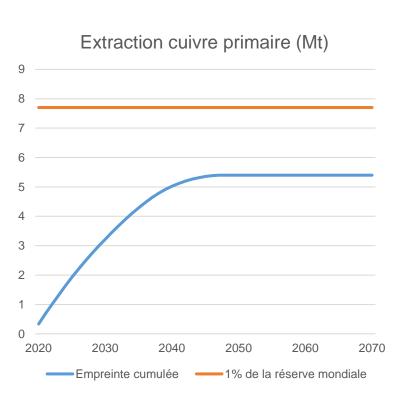
Résultats & comparaison avec scénarii RTE

Consommation moyenne 2020-2050 pour le système électrique <u>complet</u> (réseau + prod) vs. conso totale 2015


- Ordres de grandeurs comparables avec scénario RTE 100% renouvelable
- Consommation modeste par rapport à la consommation actuelle totale

Résultats & comparaison avec scénarii RTE

Consommation moyenne 2020-2050 pour le système électrique <u>complet</u> (réseau + prod) vs. conso totale 2015



- Ordres de grandeurs comparables avec scénario RTE 100% renouvelable
- Consommation modeste par rapport à la consommation actuelle totale
- Surtout si on s'intéresse à l'écart entre « tendanciels » et scénarii 100% renouvelables

7

Criticité du cuivre, et leviers pour réduire la pression

- Substitution du cuivre par l'aluminium dans les conducteurs
- Flexibilité de la demande électrique pour éviter de surdimensionner le réseau
- · Sobriété sur la demande en électricité (cf. RTE)...
- ... et sur les autres usages consommateurs de cuivre
 - Appareils électriques et électroniques
 - Et surtout bâtiment (baisse des construction neuves)
- Augmentation du taux de récupération et recyclage (100% à terme)

3. La transition énergétique 3.1 L'éolien

- 3.2 Le photovoltaïque
- 3.3 Les réseaux
- 3.4 Les batteries
- 3.5 Synthèse

Contexte et motivations

Scénario de non transition énergétique

- Changement climatique : sécheresses, pics de température, montée des eaux...
- Impacts environnementaux liés à l'extraction et au raffinage du pétrole

Scénario de transition énergétique

- · Sobriété et éfficacité énergétique
- Véhicules identiques avec des agrocarburants : conflits d'usage
- OU véhicules similaires avec du biogaz : peu d'initiatives politiques
- OU véhicules électriques à batterie : fortes Initiatives politiques, enjeux matériaux

Les enjeux matière des batteries lithium-ion

Lithium: environs 6 kg pour une batterie de 60kWh

 Non substituable, impacts environnementaux dans les salars américains : forte consommation et pollution des eaux, impact populations locales

Cobalt: environs 8kg

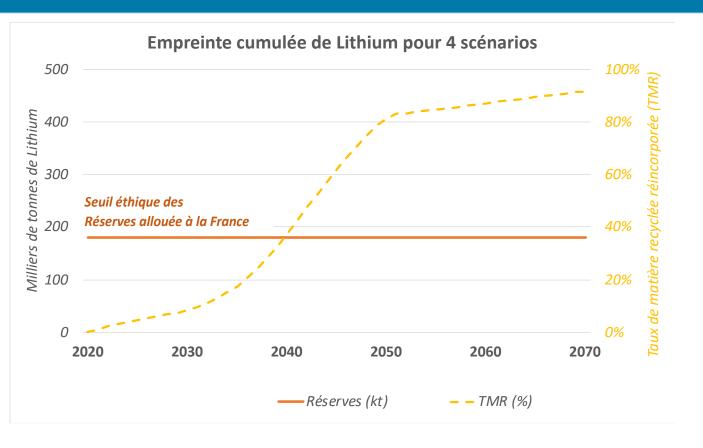
• Impacts sociaux majeurs, contraintes géopolitiqes, tensions sur l'offre

Nickel de classe I: environs 30kg

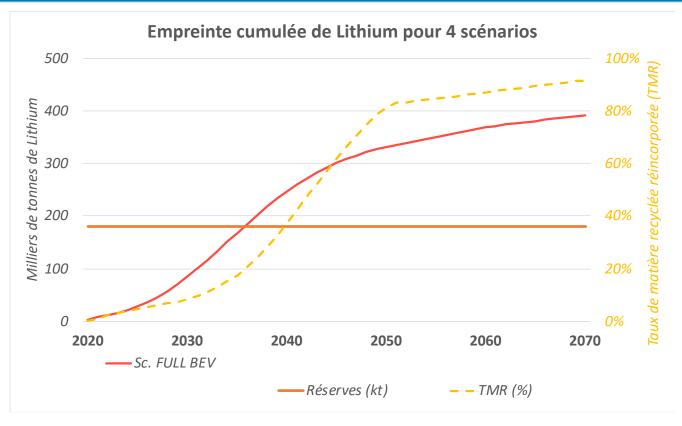
Impacts socio-environementaux locaux, tensions d'approvisionnement

Cuivre: environs 20kg

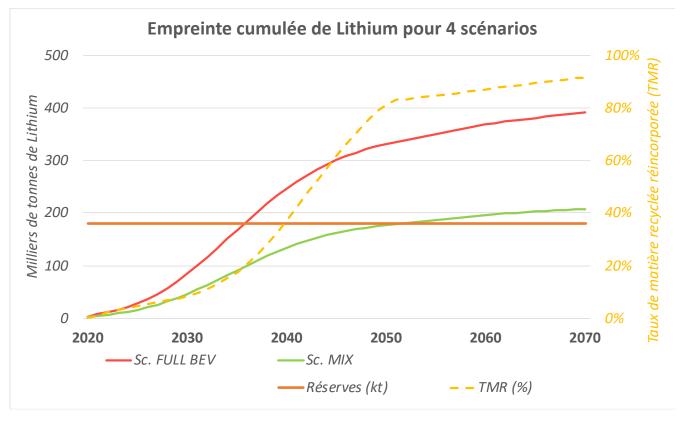
Impacts environnementaux, forte réduction des teneurs


La démarche négaMat appliquée aux transports

- Évaluation des réserves prouvées (17 Mt Li, 7 Mt Co)
 - Pas de pari sur le futur
 - Limitation de l'extraction minière
- Affectation des réserves au prorata de la population (1%)
- Modélisation des besoins d'extraction selon
 - Evolution du parc de véhicules
 - Technologies de batteries (NMC, LFP et NCA) dans des proportions évolutives et cohérentes avec un consensus d'études récentes (AIE, McKinsey, T&E)
 - Recyclage
- Sobriété
 - Autonomie modérée des véhicules à batterie
 - Réduction du poids des véhicules


≥ Empreinte en Lithium - leviers d'action

Empreinte en Lithium - leviers d'action

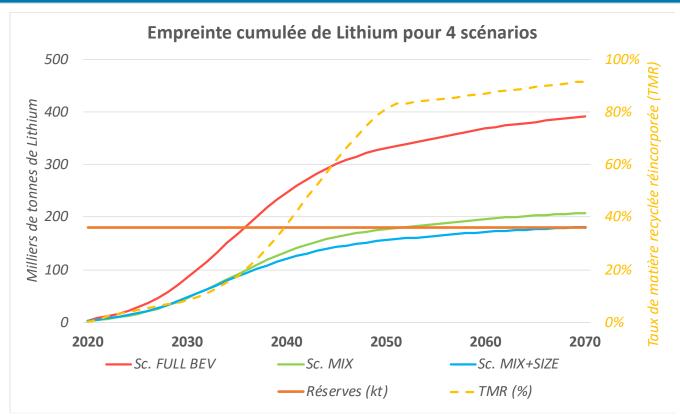


Scénario FULL BEV :

tout électrique (VP+VUL+PL) à 2050 autonomie limitée + sans sobriété d'usage

Empreinte en Lithium - leviers d'action

Scénario FULL BEV :


tout électrique (VP+VUL+PL) à 2050 autonomie limitée + sans sobriété d'usage

Scénario MIX:

Mix électrique, hybride GNV, et 100% GNV (mix scénario négaWatt)

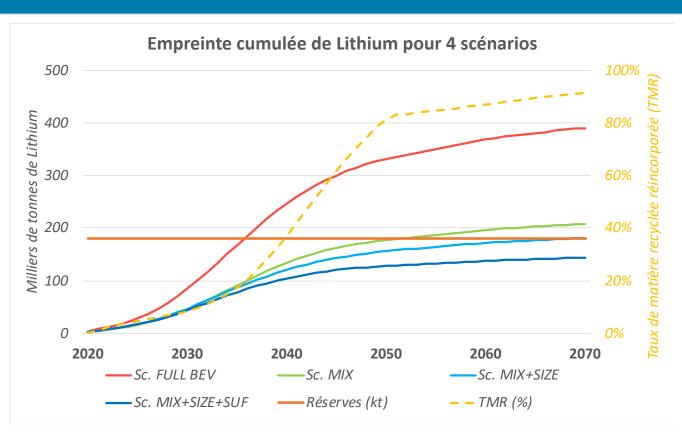
Empreinte en Lithium - leviers d'action

Scénario FULL BEV :

tout électrique (VP+VUL+PL) à 2050 autonomie limitée + sans sobriété d'usage

Scénario MIX:

Mix électrique, hybride GNV, et 100% GNV (mix scénario négaWatt)


Scénario MIX+SIZE:

MIX + optimisation de la taille des véhicules

7

Empreinte en Lithium - leviers d'action

Scénario FULL BEV :

tout électrique (VP+VUL+PL) à 2050 autonomie limitée + sans sobriété d'usage

Scénario MIX:

Mix électrique, hybride GNV, et 100% GNV (mix scénario négaWatt)

Scénario MIX+SIZE:

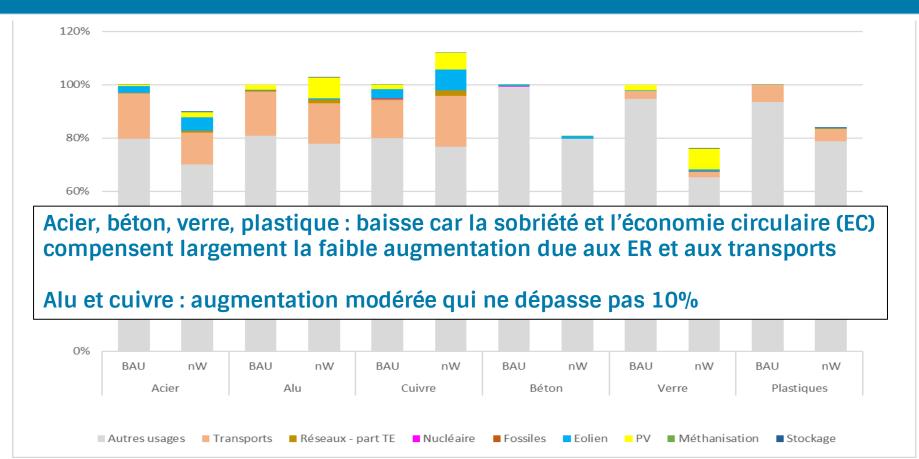
MIX + optimisation de la taille des véhicules

Scénario MIX+SIZE+SUF:

MIX + SIZE + sobriété (covoiturage et réduction de la voiture indiv.) 69

- 3.1 L'éolien
- 3.2 Le photovoltaïque
- 3.3 Les réseaux
- 3.4 Les batteries
- 3.5 Synthèse

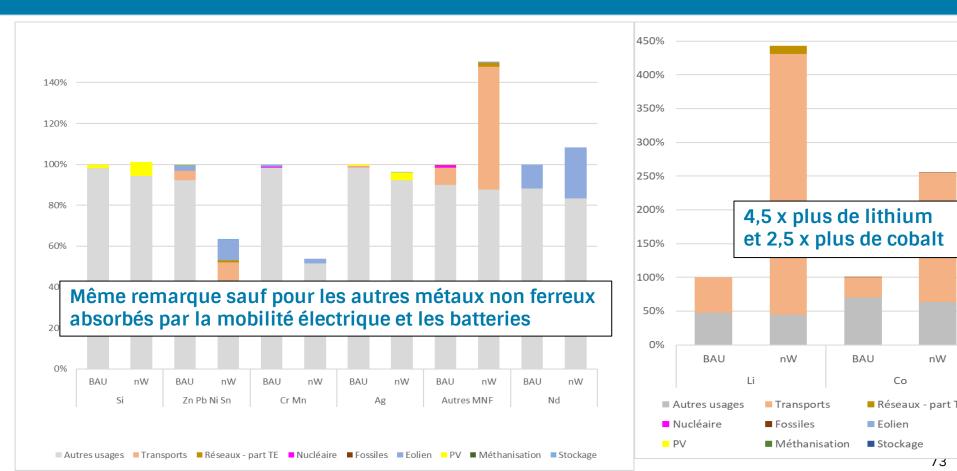
Quelle transition énergétique ? Avec quoi la compare-t-on ?


- Quelle transition énergétique ? le scénario négaWatt
- Qu'est ce qu'un scénario de non transition énergétique?
 Que proposent en échange ceux qui alertent sur les « supposés méfaits de la transition énergétique?
- Un scénario « Buisness as usual » où rien ne change.
 - ✓ Même niveau de consommation ?
 - ✓ Pas ou peu de renouvelable ?
 - ✓ Pas ou peu de véhicules électriques ?

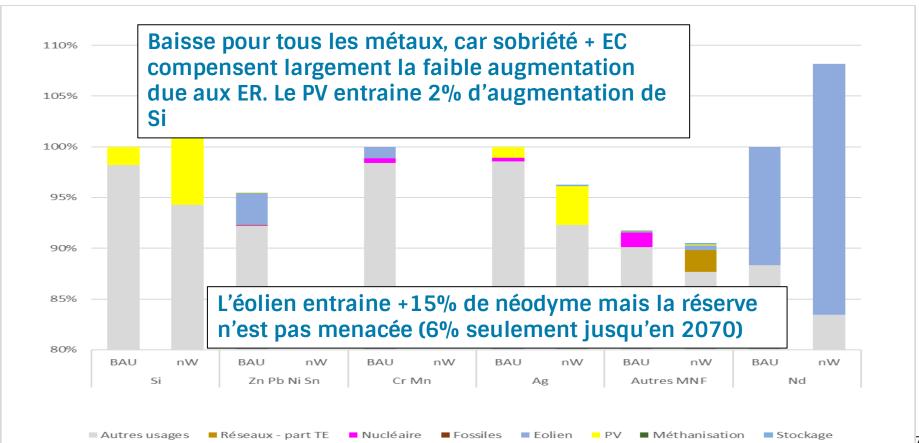
Option peu réaliste car totalement incompatible avec l'accord de Paris

Un scénario dit « décarboné » avec d'autres options ?
 Exemple : scénario M03 de RTE scénario S4 de l'ADEME (cf. rapport matériaux)
 Cette option inclut les énergies renouvelables et la mobilité électrique

En général la TE économise des matériaux



La mobilité absorbe Li, Co et autres MNF



Et si on enlève la mobilité

Conclusion

- La transition énergétique, ce n'est pas QUE le changement de mix énergétique et la décarbonation
- La sobriété et l'économie circulaire permettent une économie de matériaux supérieure à ce que requièrent les énergies renouvelables
- Dans le scénario négaWatt, les réserves sont préservées. Le cuivre, le cobalt et le lithium sont critiques
- Le cuivre exige une forte substitution vers l'aluminium
- Le lithium et le cobalt exigent une mobilité sobre et raisonnable avec un mix entre électrique et biométhane

Pour aller plus loin

→ De nombreuses ressources disponibles sur :

www.negawatt.org

Synthèse du scénario
Rapport complet
Graphiques dynamiques
Replay de la présentation complète

Soutenez négaWatt

Adhérez ou faites

un don sur

www.negawatt.org

→ Des réponses aux idées reçues sur la transition énergétique sur :

www.decrypterlenergie.org